Published on Sep 03, 2023
Existing research in association mining has focused mainly on how to expedite the search for frequently co-occurring groups of items in "shopping cart" type of transactions; less attention has been paid to methods that exploit these "frequent itemsets" for prediction purposes. This paper contributes to the latter task by proposing a technique that uses partial information about the contents of a shopping cart for the prediction of what else the customer is likely to buy.
Using the recently proposed data structure of itemset trees (IT-trees), we obtain, in a computationally efficient manner, all rules whose antecedents contain at least one item from the incomplete shopping cart. Then, we combine these rules by another technique called Bayesian decision theory to predict the mutually independent items.
Finally we introduce a new algorithm based on the Dempster-Shafer (DS) theory of evidence combination which is combined with above techniques to perform well in prediction process
Our proposed system introduces Dempster-Shafer (DS) theory of evidence combination algorithm. DS theory still grow very fast with the average length of the transactions and with the number of distinct items in real world applications
It can be consist of 4 modules.
Item tree generation.
Rule generation mechanism.
Bayesian approach.
DS combination algorithm
System : Pentium IV 2.4 GHz
Hard Disk : 40 GB
Floppy Drive : 1.44 MB
Monitor : 15 VGA color
Mouse : Logitech.
Keyboard : 110 keys enhanced
RAM : 256 MB
O/S : Windows XP.
Language : Asp.Net, c#.
Data Base : Sql Server 2005